参考文献

Adams, W. J., Graf, E. W., & Ernst, M. O. (2004). Experience can change the ‘lightfrom-above’ prior. Nature Neuroscience, 7, 1057–1058.

Aglioti, S., DeSouza, J. F., & Goodale, M. A. (1995). Size-contrast illusions deceive the eye but not the hand. Current Biology, 5(6), 679685.

Alais, D., Cass, J., O’Shea, R. P., & Blake, R. (2010). Visual sensitivity underlyingchanges in visual consciousness. Current Biology, 20, 13621367.

Anderson, B. L. (1994). The role of partial occlusion in stereopsis. Nature, 367,365368.

Andrews, D. P. (1967). Perception of contour orientation in the central fovea. I:Short lines. Vision Research, 7, 975997.

Andrews, B. W., & Pollen, D. A. (1979). Relationship between spatial frequencyselectivity and receptive field profile of simple cells. Journal of Physiology–London, 287, 163–167.

Andrews, T. J., & Blakemore, C. (2002). Integration of motion information duringbinocular rivalry. Vision Research, 42, 301309.

Assee, A., & Qian, N. (2007). Solving daVinci stereopsis with depth-edge-selective V2cells. Vision Research, 47, 2585–2602.

Atkinson, J., Hood, B., Wattam-Bell, J., Anker, S., & Tricklebank, J. (1988). Development of orientation discrimination in infancy. Perception, 17(5), 587–595.

Bach, M., & Meigen, T. (1992). Electrophysiological correlates of texture segregation in the human visual evoked potential. Vision Research, 32(3), 417–424.

Bach, M., & Meigen, T. (1997). Similar electrophysiological correlates of texturesegregation induced by luminance, orientation, motion and stereo. VisionResearch, 37(11), 1409–1414.

Bach, M., & Meigen, T. (1999). Electrophysiological correlates of human texturesegregation, an overview. Documenta Ophthalmologica, 95(3–4), 335–347.

Baker, D. H., Meese, T. S., Mansouri, B., & Hess, R. F. (2007). Binocular summation of contrast remains intact in strabismic amblyopia. Investigative Ophthalmology and Visual Science, 48, 5332–5338.

Bandettini, P., Wong, E., Hinks, R., Tikofsky, R., & Hyde, J. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine, 25, 390–397.

Banton, T., & Levi, D. M. (1991). Binocular summation in vernier acuity. Journal of the Optical Society of America A. Optics and Image Science, 8, 673–680.

Barbeito, R., & Simpson, T. L. (1991). The relationship between eye position andegocentric visual direction. Perception & Psychophysics, 50, 373–382.

Barry, S. R. (2009). Fixing my gaze: A scientist’s journey into seeing in three dimensions.New York: Basic Books.

Bearse, M. A., Jr, & Freeman, R. D. (1994). Binocular summation in orientationdiscrimination depends on stimulus contrast and duration. Vision Research, 34,19–29.

Biederman, I. (1987). Recognition-by–components: A theory of human imageunderstanding. Psychological Review, 94, 115–147.

Biederman, I., & Kalocsai, P. (1997). Neurocomputational bases of object and facerecognition. Philosophical Transactions of the Royal Society of London Series B–Biological Sciences, 352(1358), 1203–1219.

Bishop, P. O., & Pettigrew, J. D. (1986). Neural mechanisms of binocular vision. Vision Research, 26, 1587–1600.

Blake, R., & He, S. (2005). Visual adaptation as a tool for studying the neuralcorrelates of conscious visual awareness. In C. Clifford & G. Rhodes (Eds.), Fitting the mind to the world (pp. 281–307). Oxford University Press.

Blake, R., Sobel, K., & Gilroy, L. A. (2003). Visual motion retards alternations between conflicting perceptual interpretations. Neuron, 39, 869–878.

Blake, R., Tadin, D., Sobel, K., Chong, S. C., & Raissian, R. (2006). Strength of early visual adaptation depends on visual awareness. Proceedings of the National Academy of Sciences of the United States of America, 103, 4783–4788.

Blake, R., Westendorf, D., & Fox, R. (1990). Temporal perturbations of binocularrivalry. Perception & Psychophysics, 48, 593–602.

Blakemore, C. (1970). A new kind of stereoscopic vision. Vision Research, 10,1181–1199.

Bornstein, M. H., Krinsky, S. J., & Benasich, A. A. (1986). Fine orientationdiscrimination and shape constancy in young infants. Journal of ExperimentalPsychology, 41, 49–60.

Bradley, D. C., Qian, N., & Andersen, R. A. (1995). Integration of motion andstereopsis in middle temporal cortical area of macaques. Nature, 373, 609–611.

Brefczynski, J. A., & DeYoe, E. A. (1999). A physiological correlate of the ‘spotlight’ of visual attention. Nature Neuroscience, 2(4), 370–374.

Brewer, A. A., Press, W. A., Logothetis, N. K., & Wandell, B. A. (2002). Visualareas in macaque cortex measured using functional magnetic resonance imaging.Journal of Neuroscience, 22(23), 10416–10426.

Brouwer, G. J., & Heeger, D. J. (2009). Decoding and reconstructing color fromresponses in human visual cortex. Journal of Neuroscience, 29(44),13992–14003.

Bülthoff, H. H., & Edelman, S. (1992). Psychophysical support for a 2-dimensionalview interpolation theory of object recognition. Proceedings of the NationalAcademy of Sciences of the United States of America, 89, 60–64.

Bülthoff, H. H., Edelman, S. Y., & Tarr, M. J. (1995). How are three-dimensionalobjects represented in the brain? Cerebral Cortex, 5, 247–260

Brown, R. J., & Norcia, A. M. (1997). A method for investigating binocular rivalryin real-time with the steady-state VEP. Vision Research, 37, 2401–2408.

Caputo, G. (1998). Texture brightness filling-in. Vision Research, 38, 841–851.

Caron, A. J., Caron, R. F., & Carlson, V. (1979). Infant perception of the invariantshape of objects varying in slant. Child Development, 50, 716–721

Carter, O., & Cavanagh, P. (2007). Onset rivalry: Brief presentation isolates anearly independent phase of perceptual competition. PLOS One, 2, e343.

Casco, C., Grieco, A., Campana, G., Corvino, M. P., & Caputo, G. (2005). Attentionmodulates psychophysical and electrophysiological response to visual texturesegmentation in humans. Vision Research, 45(18), 2384–2396.

Chen, Y., & Qian, N. (2004) A coarse-to-fine disparity energy model with bothphase-shift and position-shift receptive field mechanisms. NeuralComputation,16, 1545–1577.

Chong, S. C., & Blake, R. (2006). Exogenous attention and endogenous attentioninfluence initial dominance in binocular rivalry. Vision Research, 46,1794–1803.

Cormack, L. K., Stevenson, S. B., & Schor, C. M. (1993). Disparity-tuned channelsof the human visual system. Visual Neuroscience, 10, 585–596.

Cotton, P. L., & Smith, A. T. (2007). Contralateral visual hemifieldrepresentations in the human pulvinar nucleus. Journal of Neurophysiology,98(3), 1600–1609.

Cumming, B. G., & Parker, A. J. (1999). Binocular neurons in V1 of awake monkeysare selectiver for absolute, not relative, disparity. Journal of Neuroscience,19,5602–5618.

Danckert, J., & Goodale, M. (2003). Ups and downs in the visual control of action.In S. H. Johnson-Frey (Ed.), Taking action: Cognitive neuroscienceperspectives on intentional acts (pp. 29–64). Cambridge, MA: MIT Press.

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysisI. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.

Dannemiller, J. L. (1998). Color constancy and color vision during infancy:Methodological and empirical issues. In V. Walsh & J. Kulikowski (Eds.),Perceptual constancy: Why things look as they do (pp. 229–261). New York:Cambridge University Press.

Da Silva, J. A. (1985). Scales for perceived egocentric distance in a large openfield: Comparison of three psychophysical methods. The American Journal of Psychology, 98, 119–144.

Day, R. H., & McKenzie, B. E. (1981). Infant perception of the invariant size ofapproaching and receding objects. Developmental Psychology, 17, 670–677.

Dijkerman, H. C., Milner, A. D., & Carey, D. P. (1996). The perception and prehensionof objects oriented in the depth plane. I. Effects of visual form agnosia.Experimental Brain Research, 112(3), 442–451.

Ding, J., & Sperling, G. (2006). A gain-control theory of binocular combination.Proceedings of the National Academy of Sciences of the United States of America,103, 1141–1146.

de Labra, C., & Valle-Inclán, F. (2001). Electrical activity in primary visual areadue to interocular suppression. Neuroreport, 12, 4099–4102.

Edden, R. A., Muthukumaraswamy, S. D., Freeman, T. C., & Singh, K. D. (2009).Orientation discrimination performance is predicted by GABA concentrationand gamma oscillation frequency in human primary visual cortex. Journal ofNeuroscience, 29(50), 15721–15726.

Ee, R., & van den Berg, A. V. (2006). Direct extraction of curvature based metric shape from stereo by view modulated receptive fields. Biological Cybernetics, 95, 455–486.

Ehrenstein, W. H., & Gillam, B. (1998). Early demonstrations of subjective contours, amodal completion, and depth from half-occlusions: ‘‘Stereoscopic experiments with silhouettes’’ by Adolf von Szily (1921). Perception, 27, 1407–1416.

Engel, S. A., Rumelhart, D. E., Wandell, B. A., Lee, A. T., Glover, G. H.,Chichilnisky, E. J., et al. (1993). Functional MRI measurements of humanstriate cortex topography. Society for Neuroscience Abstracts, 19, 335.

Engel, S. A., Rumelhart, D. E., Wandell, B. A., Lee, A. T., Glover, G. H.,Chichilnisky, E. J.,et al. (1994). FMRI of human visual cortex [letter][published erratum appears in Nature 1994 Jul 14;370(6485):106]. Nature,369(6481), 525.

Erkelens, C. J. (2000). Perceived direction during monocular viewing is based onsignals of the viewing eye only. Vision Research, 20, 2411–2419.

Erkelens, C. J., & Van Ee, R. (1997). Capture of the visual direction of monocularobjects by adjacent binocular objects. Vision Research, 37(13), 1735–1745.

Fahle, M., Quenzer, T., Braun, C., & Spang, K. (2003). Feature-specificelectrophysiological correlates of texture segregation. Vision Research,43(1),7–19.

Fahrenfort, J. J., Scholte, H. S., & Lamme, V. A. (2007). Masking disrupts reentrantprocessing in human visual cortex. Journal of Cognitive Neuroscience, 19(9),1488–1497.

Farah, M. J., Wilson, K. D., Drain, H. M., & Tanaka, J. R. (1998) What is “special” about face perception? Psychological Review, 105(3), 482–498.

Fernandez, J. M., & Farell, B. (2006). Motion in depth from interocular velocitydifferences revealed by differential motion aftereffect. Vision Research, 46,1307–1317.

Fischl, B. (2010) Freesurfer. Available from:<http://surfer.nmr.mgh.harvard.edu/>.

Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis.II:Inflation, flattening, and a surface-based coordinate system. NeuroImage,9(2),195–207.

Francis, J. L. & Harwood, K. A. (1951). The variation of the projection center withdifferential stimulus and its relation to ocular dominance. In Transactionsof the international congress (pp. 75–87). London British Optical Association

Franz, V. H. (2003). Manual size estimation: A neuropsychological measure ofperception? Experimental Brain Research, 151(4), 471–477.

Freire, A., Lee, K., & Symons, L. A. (2000). The face-inversion effect as a deficit in the encoding of configural information: Direct evidence. Perception, 29(2), 159–170.

Frisen, L., & Lindblom, B. (1988). Binocular summation in humans: Evidence for ahierarchical model. Journal of Physiology, 402, 773–782.

Gandhi, S. P., Heeger, D. J., & Boynton, G. M. (1999). Spatial attention affects brain activity in human primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 96(6), 3314–3319.

Ganel, T., Chajut, E., & Algom, D. (2008). Visual coding for action violatesfundamental psychophysical principles. Current Biology, 18(14), R599–601.

Ge, L., Wang, Z., McCleery, J. P., & Lee, K. (2006). Activation of face expertise and the face inversion effect. Psychological Science, 17(1), 12–16.

Gilchrist, A. L. (1977). Perceived lightness depends on perceived spatialarrangement. Science, 195, 185–187.

Gilchrist, A. L. (1988). Lightness contrast and failures of constancy: A commonexplanation. Perception & Psychophysics, 43, 415–424.

Gillam, B., & Borsting, E. (1988). The role of monocular regions in stereoscopicdisplays. Perception, 17, 603–608.

Gillam, B. (1995). Matching needed for stereopsis. Nature, 373, 202.

Gillam, B., Blackburn, S., & Nakayama, K. (1999). Stereopsis based on monoculargaps: Metrical encoding of depth and slant without matching contours. VisionResearch, 39, 493–502.

Gillam, B., & Grove, P. M. (2004). Slant or occlusion: Global factors resolvestereoscopic ambiguity in sets of horizontal lines. Vision Research, 44,2359–2366.

Gillam, B., & Nakayama, K. (1999). Quantitative depth for a phantom surface can be based on cyclopean occlusion cues alone. Vision Research, 39, 109–112.

Glennerster, A., McKee, S. P., & Birch, M. D. (2002). Evidence for surfacebasedprocessing of binocular disparity. Current Biology, 12, 825–828.

Goebel, R. (2010). BrainVoyager Software. Available from: <http://www.brainvoyager.com/>.

Goodale, M. A., Jakobson, L. S., Milner, A. D., Perrett, D. I., Benson, P. J., & Hietanen, J.K. (1994). The nature and limits of orientation and pattern processing supporting visuomotor control in a visual form agnosic. The Journal of Cognitive Neuroscience, 6(1), 46–56.

Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.

Granrud, C. E. (2006). Size constancy in infants: 4-month-olds’ responses to physical versus retinal image size. Journal of Experimental Psychology: Human Perception and Performance, 32, 1398–1404.

Gregory R, 1980 Perceptions as hypotheses. Philosophical Transactions of the Royal Society of London,Series B, 290, 181-197.

Grossberg, S., & Mingolla, E. (1985). Neural dynamics of form perception: boundarycompletion, illusory figures, and neon color spreading. Psychological Review, 92,173211.

Gulyás, B., & Roland, P. (1994). Processing and analysis of form, colour and binocular disparity in the human brain: Functional anatomy by positron emissiontomography. European Journal of Neuroscience, 6, 1811–1828.

Hansen, K. A., David, S. V., & Gallant, J. L. (2004). Parametric reverse correlationreveals spatial linearity of retinotopic human V1 BOLD response. NeuroImage,23(1), 233–241.

Harris, J. M., McKee, S. P., & Watamaniuk, S. N. (1998). Visual search for motion-indepth: Stereomotion does not pop out from disparity noise. NatureNeuroscience, 1, 165–168.

Harris, J. M., Nefs, H. T., & Grafton, C. E. (2008). Binocular vision and motion-indepth. Spatial Vision, 21, 531–547.

Hayashi, R., Maeda, T., Shimojo, S., & Tachi, S. (2004). An integrative model ofbinocular vision: A stereo model utilizing interoculary unpaired pointsproduces both depth and binocular rivalry. Vision Research, 44, 2367–2380.

Haynes, J.D., Deichmann, R., & Rees, G. (2005). Eye-specific effects of binocularrivalry in the human lateral geniculate nucleus. Nature, 438, 496–499.

Haynes, J. D., & Rees, G. (2005). Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature Neuroscience, 8(5), 686–691.

Haynes, J. D., & Rees, G. (2006). Decoding mental states from brain activity inhumans. Nature Reviews Neuroscience, 7(7), 523–534.

Haijiang, Q., Saunders, J. A., Stone, R. W., & Backus, B. T. (2006). Demonstration of cue recruitment: Change in visual appearance by means of Pavlovian

conditioning. Proceedings of the National Academy of Sciences of the UnitedStates of America, 103(2), 483–488.

Harrison, S. J., & Backus, B. T. (2010a). Disambiguating Necker cube rotation using a location cue: What types of spatial location signal can the visual system learn? Journal of Vision, 10(6), 1–15.

Hariharan-Vilupuru, S., & Bedell, H. E. (2009). The perceived visual direction ofmonocular objects in random-dot stereograms is influenced by perceived depthand allelotropia. Vision Research, 49(2), 190–201.

Harman, K. L., Humphrey, G. K., & Goodale, M. A. (1999). Active manual control ofobject views facilitates visual recognition. Current Biology, 9, 13151318.

Hill H, & Johnston A, 2007 The hollow-face illusion: Object-specific knowledge, general assumptions or properties of the stimulus? Perception, 36, 199-223

Hohwy, J., Roepstorff, A., & Friston, K. (2008). Predictive coding explains binocular rivalry: An epistemological review. Cognition, 108, 687–701.

Hong, S. W., & Shevell, S. K. (2009). Color-binding errors during rivalroussuppression of form. Psychological Science, 20(9), 1084–1091.

Hotson, J. R., & Anand, S. (1999). The selectivity and timing of motion processing in human temporo-parieto-occipital cortex: A transcranial magnetic stimulation study. Neuropsychologia, 37, 169–179.

Hubel, D. H., & Wiesel, T. N. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. Journal of Neurophysiology, 28, 1041–1059.

James, K. H., Humphrey, K., & Goodale, M. A. (2001). Manipulating and recognizingvirtual objects: Where the action is. Canadian Journal of Experimental Psychology,55, 111–120.

Jiang, Y., Costello, P., & He, S. (2007). Processing of invisible stimuli: Advantage of upright faces and recognizable words in overcoming interocular suppression.Psychological Science, 18, 349–355.
Jiang, Y., & He, S. (2006). Cortical responses to invisible faces: Dissociatingsubsystems for facial-information processing. Current Biology, 16, 2023–2029.

Jordan, J. R., Geisler, W. S., & Bovik, A. C. (1990). Color as a source of information in the stereo correspondence process. Vision Research, 30, 1955–1970.

Kalarickal, G. J., & Marshall, J. A. (2000). Neural model of temporal and stochasticproperties of binocular rivalry. Neurocomputing, 32–33, 843–853.

Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8(5), 679–685.

Kang, M. S., Heeger, D. H., & Blake, R. (2009). Periodic perturbations producingphase-locked fluctuations in visual perception. Journal of Vision, 9, 1–12.

Kastner, S., O’Connor, D. H., Fukui, M. M., Fehd, H. M., Herwig, U., & Pinsk, M. A. (2004). Functional imaging of the human lateral geniculate nucleus andpulvinar. Journal of Neurophysiology, 91(1), 438–448.

Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999).Increased activity in human visual cortex during directed attention in theabsence of visual stimulation. Neuron, 22(4), 751–761.

Kastner, S., Schneider, K. A., & Wunderlich, K. (2006). Beyond a relay nucleus:Neuroimaging views on the human LGN. Progress in Brain Research, 155,125–143.

Kemp, R., McManus, C., & Pigott, T. (1990). Sensitivity to the displacement of facial features
negative and inverted images. Perception, 19, 531–543.

Kilgour, A. R., & Lederman, S. J. (2002). Face recognition by hand. Perception &Psychophysics, 64, 339–352.

Kim, C. Y., & Blake, R. (2005). Psychophysical magic: Rendering the visible‘invisible’. Trends in Cognitive Sciences, 9, 381–388.

Kleffner, D. A., & Ramachandran, V. S. (1992). On the perception of shape fromshading. Perception and Psychophysics, 52, 18–36.

Koch, C. (2007). The quest for consciousness: A neurobiological approach. GreenwoodVillage, CO: Roberts & Company.

Kolster, H., Mandeville, J. B., Arsenault, J. T., Ekstrom, L. B., Wald, L. L., & Vanduffel,W. (2009). Visual
field map clusters in macaque extrastriate visual cortex. Journal of Neuroscience, 29(21), 7031–7039.

Kovács, I., Papathomas, T. V., Yang, M., & Fehér, A. (1996). When the brainchanges its mind: Interocular grouping during binocular rivalry. Proceedingsof the National Academy of Sciences of the United States of America, 93,15508–15511.

Kreiman, G., Fried, I., & Koch, C. (2002). Single-neuron correlates of subjective vision in the human medial temporal lobe. Proceedings of the National Academy of Sciences of the United States of America, 99, 8378–8383.

Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Pncelet,B. P., et al. (1992). Dynamic magnetic resonance imaging of human brainactivity during primary sensory stimulation. Proceedings of the NationalAcademy of Sciences of the United States of America, 89, 5675–5679.

Laing, C. R., & Chow, C. C. (2002). A spiking neuron model for binocular rivalry.Journal of Computational Neuroscience, 12, 39–53.

Lamme, V. A., Van Dijk, B. W., & Spekreijse, H. (1992). Texture segregation isprocessed by primary visual cortex in man and monkey. Evidence from VEPexperiments. Vision Research, 32(5), 797–807

Lappin, J. S., & Craft, W. D. (2000). Foundations of spatial vision: From retinal images to perceived shapes. Psychological Review, 107, 6–38.

Leder, H., & Bruce, V. (2000). When inverted faces are recognized:The role of configural information in face recognition. The Quarterly Journal of Experimental Psychology, 53A(2), 513–536.

Lee, S.-H., & Blake, R. (2002). V1 activity is reduced during binocular rivalry. Journal of Vision, 2(9), 618–626.

Lee, S.-H., Blake, R., & Heeger, D. (2005). Traveling waves of activity in primaryvisual cortex during binocular rivalry. Nature Neuroscience, 8, 22–23.

Lee, S.-H., Blake, R., & Heeger, D. (2007). Hierarchy of cortical responses underlying binocular rivalry. Nature Neuroscience, 10, 1048–1054.

Lehky, S. R., & Sejnowski, T. J. (1990). Neural model of stereoacuity and depthinterpolation based on a distributed representation of stereo disparity. Journal of Neuroscience, 10, 2281–2299.

Legge, G. E. (1984). Binocular contrast summation I. Detection and discrimination.Vision Research, 24, 373–383.

Leopold, D. A., Wilke, M., Maier, A., & Logothetis, N. (2002). Stable perception of visually ambiguous patterns. Nature Neuroscience, 5, 605–609.

Li, W., Piëch, V., & Gilbert, C. D. (2004). Perceptual learning and top-down influences in primary visual cortex. Nature Neuroscience, 7(6), 651–657.

Liu, C. H., Ward, J., & Markall, H. (2007). The role of active exploration of 3D face stimuli on recognition memory of facial information. Journal of Experimental Psychology: Human Perception and Performance, 33, 895–904.

Lig, R.,Wohlschlöger, A.M., Burazanis, S.,Wöller, A., Nunnemann, S.& Mühlau, M. (2008). Neural correlates of spontaneous percept switches in ambiguous stimuli: An event-related functional magnetic resonance imaging study. Cognitive Neuroscience, 28, 2325–2332.

Likova, L. L., & Tyler, C. W. (2007). Stereomotion processing in the human occipitalcortex. Neuroimage, 38, 293–305.

Lin, Z., & He, S. (2009). Seeing the invisible: The scope and limits of unconsciousprocessing in binocular rivalry. Progress in Neurobiology, 87, 195–211.Liu, L., Stevenson, S. B., & Schor, C. M. (1994). Quantitative stereoscopic depthwithout binocular correspondence. Nature, 367, 66–68.

Logothetis, N. K., Leopold, D. A., & Sheinberg, D. L. (1996). What is rivalling during binocular rivalry? Nature, 380, 621–624.

Longuet-Higgins, H. C. (1982). The role of the vertical dimension in stereoscopicvision. Perception, 11, 377–386.

Ludwig I, Pieper W, Lachnit H, (2007) Temporal integration of monocular images separated in time: stereopsis, stereoacuity, and binocular luste. Perception & Psychophysics, 69, 92–102.

Malach, R., Reppas, J. B., Benson, R. B., Kwong, K. K., Jiang, H., Kennedy, W. A., et al. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences of the United States of America, 92, 8135–8138.

Malik, J., Anderson, B. L., & Charowhas, C. E. (1999). Stereoscopic occlusionjunctions. Nature Neuroscience, 2(9), 840–843.

Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatialorganization of three-dimensional shapes. Proceedings of the Royal Society,London, B, 200, 269–294.

McMains, S. A., Fehd, H. M., Emmanouil, T. A., & Kastner, S. (2007). Mechanisms of feature- and space-based attention: Response modulation and baselineincreases. Journal of Neurophysiology, 98(4), 2110–2121.

Meadows, J. (1974). Disturbed perception of colours associated with localizedcerebral lesions. Brain, 97, 615–632.

Mamassian, P., & Goutcher, R. (2001). Prior knowledge on the illumination position.Cognition, 81, B1–B9.

Manny, R. E. (1992). Orientation selectivity of 3-month-old infants. Vision Research,32, 1817–1828.

Meng, M., & Tong, F. (2004). Can attention selectively bias bistable perception?Differences between binocular rivalry and ambiguous figures. Journal of Vision, 4, 539–551.

Menz, M. D., & Freeman, R. D. (2003). Stereoscopic depth processing in the visualcortex: A coarse to fine mechanism. Nature Neuroscience, 6, 59–65.

Mitchell, D. E., Kind, P. C., Sengpiel, F., & Murphy, K. M. (2003). Brief daily periods of binocular vision prevent deprivation-induced acuity loss. Current Biology, 13, 17041708.

Mitchell, D. E., Kind, P. C., Sengpiel, F., & Murphy, K. M. (2006). Short daily periods of concordant binocular vision prevent the development of deprivationamblyopia. European Journal of Neuroscience, 23, 24582466.

Mitchell, D. E., & Sengpiel, F. (2009). Neural mechanisms of recovery following early visual deprivation. Philosophical Transactions of the Royal Society of London, Series B, 364, 383–398.

Milner, A. D., & Goodale, M. A. (2006). The visual brain in action, 2nd ed. New York:Oxford University Press.

Milner, A. D., Perrett, D. I., Johnston, R. S., Benson, P. J., Jordan, T. R., Heeley, D. W.,et al. (1991). Perception and action in ‘visual form agnosia’. Brain, 114(Pt. 1B),405–428.

Moutoussis, K., Keliris, G., Kourtzi, Z., & Logothetis, N. (2005). A binocular rivalry study of motion perception in the human brain. Vision Research, 45(17),2231–2243.

Motoyoshi, I. (1999). Texture filling-in and texture segregation revealed bytransient masking. Vision Research, 39, 1285–1291.

Muthukumaraswamy, S. D., Edden, R. A., Jones, D. K., Swettenham, J. B., & Singh, K.D. (2009). Resting GABA concentration predicts peak gamma frequency and

fMRI amplitude in response to visual stimulation in humans. Proceedings of theNational Academy of Sciences of the United States of America, 106(20), 8356–8361.

Nakayama, K., & Shimojo, S. (1990). Da Vinci stereopsis: Depth and subjectiveoccluding contours from unpaired image points. Vision Research, 30, 1811–1825.

Nawrot, M., & Blake, R. (1991). A neural network model of kinetic depth. VisualNeuroscience, 6, 219–227.

Ninio, J. (1985). Orientational versus horizontal disparity in the stereoscopicappreciation of slant. Perception, 14, 305–314.

Noest, A. J., van Ee, R., Nijs, M. M., & van Wezel, R. J. (2007). Percept-choicesequences driven by interrupted ambiguous stimuli: A low-level neural model.Journal of Vision, 7, 1–14.

Ohzawa, I., DeAngelis, G. C., & Freeman, R. D. (1990). Stereoscopic depthdiscrimination in the visual cortex: Neurons ideally suited as disparitydetectors. Science, 249, 1037–1041.

Ogawa, S., & Lee, T. M. (1990). Magnetic resonance imaging of blood vessels at highfields: In vivo and in vitro measurements and image simulation. MagneticResonance in Medicine, 16(1), 9–18.

Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonanceimaging with contrast dependent on blood oxygenation. Proceedings of theNational Academy of Sciences of the United States of America, 87(24),9868–9872.

Ogawa, S., Lee, T. M., Nayak, A. S., & Glynn, P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine, 14(1), 68–78.

Ogawa, S., Tank, D., Menon, R., Ellermann, J., Kim, S., Merkle, H., et al. (1992).Intrinsic signal changes accompanying sensory stimulation: Functional brainmapping with magnetic resonance imaging. Proceedings of the National Academyof Sciences of the United States of America, 89, 591–5955.

Orban, G. A., Dupont, P., De Bruyn, B., Vogels, R., Vanden-berghe, R., & Mortelmans,L. (1995). A motion area in human visual cortex. Proceedings of the NationalAcademy of Sciences of the United States of America, 92, 993–997.

Orban, G. A., Van Essen, D., & Vanduffel, W. (2004). Comparative mapping of highervisual areas in monkeys and humans. Trends in Cognitive Sciences, 8(7), 315–324.

Orban, G. A., Janssen, P., & Vogels, R. (2006). Extracting 3D structure from disparity. Trends in Neuroscience, 29, 466–473.

Paffen, C. L., Naber, M., & Verstraten, F. A. (2008). The spatial origin of a perceptual transition in binocular rivalry. PLOS One, 3(6), 1–6.

Paradiso, M. A., & Nakayama, K. (1991). Brightness perception and filling-in. Vision Research, 31, 1221–1236.

Pearson, J., & Brascamp, J. (2008). Sensory memory for ambiguous vision. Trends in Cognitive Sciences, 12, 334–341.

Pearson, J., & Clifford, C. W. G. (2005). When your brain decides what you see:Grouping across monocular, binocular, and stimulus rivalry. PsychologicalScience, 16(7), 516–519.

Pettigrew, J. D. (2001). Searching for the switch: Neural bases for perceptual rivalry alternations. Brain and Mind, 2, 85–118.

Pianta, M., & Gillam, B. (2003). Monocular gap stereopsis: Manipulation of theouter edge disparity and the shape of the gap. Vision Research, 43,1937–1950.

Polonsky, A., Blake, R., Braun, J., & Heeger, D. J. (2000). Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nature Neuroscience, 3, 1153–1159.

Porrill, J., Frisby, J. P., Adams, W. J., & Buckley, D. (1999). Robust and optimal use of information in stereo vision. Nature, 397, 63–65.

Previc, F. H. (1990). Functional specialization in the lower and upper visual-fields in humans – its ecological origins and neurophysiological implications. Behavioral and Brain Sciences, 13(3), 519–541.

Preston, T. J., Li, S., Kourtzi, Z., & Welchman, A. E. (2008). Multivoxel patternselectivity for perceptually relevant binocular disparities in the human brain. Journal of Neuroscience, 28, 11315–11327.

Raghunandan, A., Anderson, C. S., & Saladin, J. J. (2009). Spatial scaling of thebinocular capture effect. Optometry and Vision Science, 86(3), 279–285.

Read, J. C., & Cumming, B. G. (2007). Sensors for impossible stimuli may solve thestereo correspondence problem. Nature Neuroscience, 10, 1322–1328.

Regan, D., Giaschi, D. E., Sharpe, J., & Hong, X. H. (1992). Visual processing ofmotion-defined form: Selective failure in patients with parietotemporal lesions. Journal of Neuroscience, 12, 2198–2210.

Rock, I., Hall, S., & Davis, J. (1994). Why do ambiguous figures reverse? Acta Psychologica, 87, 33–59.

Rokers, B., Cormack, L. K., & Huk, A. C. (2009). Disparity- and velocity-based signals for three-dimensional motion perception in human MT+. Nature Neuroscience, 12, 1050–1055.

Roeber, U., & Schröger, E. (2004). Binocular rivalry is partly resolved at earlyprocessing stages with steady and with flickering presentation: A human eventrelated brain potential study. Neuroscience Letters, 371, 51–55.

Rossion, B., & Gauthier, I. (2002). How does the brain process upright and inverted faces? Behavioral and Cognitive Neuroscience Reviews, 1(1), 63–75.

Ryan, C., & Gillam, B. (1993). A proximity-contingent stereoscopic depth aftereffect:Evidence for adaptation to disparity gradients. Perception, 22, 403–418.

Sacks, O. (2006). A neurologist’s notebook, Stereo Sue (Vol. 64). TheNewYorker. June 19.

Sakai, E., Bi, H., Maruko, I., Zhang, B., Zheng, J., Wensveen, J., et al. (2006). Cortical effects of brief daily periods of unrestricted vision during early monocular form deprivation. Journal of Neurophysiology, 95, 2856–2865.

Saygin, A. P., & Sereno, M. I. (2008). Retinotopy and attention in human occipital,temporal, parietal, and frontal cortex. Cerebral Cortex, 18(9), 2158–2168.

Schira, M. M., Tyler, C. W., Breakspear, M., & Spehar, B. (2009). The foveal confluence in human visual cortex. Journal of Neuroscience, 29(28), 9050–9058.

Schluppeck, D., Glimcher, P., & Heeger, D. J. (2005). Topographic organization fordelayed saccades in human posterior parietal cortex. Journal of Neurophysiology,94(2), 1372–1384.

Schneider, K. A., Richter, M. C., & Kastner, S. (2004). Retinotopic organization and functional subdivisions of the human lateral geniculate nucleus: A highresolution functional magnetic resonance imaging study. Journal ofNeuroscience, 24(41), 8975–8985.

Schiller, P. H., Logothetis, N. K., & Charles, E. R. (1991). Parallel patheays in the visual system: Their role in perception at isoluminance. Neuropsychologia, 29(6), 433–441.

Scholte, H. S., Witteveen, S. C., Spekreijse, H., & Lamme, V. A. (2006). The influence of inattention on the neural correlates of scene segmentation. Brain Research,1076(1), 106–115.

Schubö, A., Meinecke, C., & Schröger, E. (2001). Automaticity and attention:Investigating automatic processing in texture segmentation with eventrelatedbrain potentials. Cognitive Brain Research, 11(3), 341–361.

Shimono, K., Tam, W. J., Asakura, N., & Ohmi, M. (2005). Localization of monocularstimuli in different depth planes. Vision Research, 45, 2631–2641.

Shimono, K., & Wade, N. J. (2002). Monocular alignment in different depth planes.Vision Research, 42, 1127–1135.

Schoenfeld, M. A., Tempelmann, C., Martinez, A., Hopf, J. M., Sattler, C., Heinze, H. J.,et al. (2003). Dynamics of feature binding during object-selective attention. Proceedings of the National Academy of Sciences of the United States of America, 100, 11806–11811.

Schwaninger, A., Ryf, S., & Hofer, F. (2003). Configural information is processed differently in the perception and recognition of faces. Vision Research, 43, 15011505.

Searcy, J. H., & Bartlett, J. C. (1996). Inversion and processing of component and spatial-relational information in faces. Journal of Experimental Psychology Human Perception and Performance:Section A, 22A(4), 904–915.

Serences, J. T., & Boynton, G. M. (2007a). Feature-based attentional modulations in the absence of direct visual stimulation. Neuron, 55(2), 301–312.

Serences, J. T., & Boynton, G. M. (2007b). The representation of behavioral choicefor motion in human visual cortex. Journal of Neuroscience, 27(47),12893–12899.

Sereno, M. E., Trinath, T., Augath, M., & Logothetis, N. K. (2002). Three-dimensional shape representation in monkey cortex. Neuron, 33, 635–652.

Shioiri, S., Saisho, H., & Yaguchi, H. (2000). Motion in depth based on inter-ocularvelocity differences. Vision Research, 40, 2565–2572.

Silver, M. A., Ress, D., & Heeger, D. J. (2005). Topographic maps of visual spatialattention in human parietal cortex. Journal of Neurophysiology, 94(2),1358–1371.

Sincich, L. C., Adams, D. L., & Horton, J. C. (2003). Complete flatmounting of themacaque cerebral cortex. Visual Neuroscience, 20(6), 663–686.

Slater, A., Mattock, A., & Brown, E. (1990). Size constancy at birth: Newborn infants’responses to retinal and real size. Journal of Experimental Child Psychology, 49,314–322.

Slater, A., & Morison, V. (1985). Shape constancy and slant perception at birth.Perception, 14, 337–344.

Slater, A., Morison, V., & Somers, M. (1988). Orientation discrimination and cortical function in the human newborn. Perception, 17, 597–602.

Smith, S. (2010). FMRIB. Available from: <http://www.fmrib.ox.ac.uk/>.

Smith, A. T., Cotton, P. L., Bruno, A., & Moutsiana, C. (2009). Dissociating vision and visual attention in the human pulvinar. Journal of Neurophysiology, 101(2),917–925.

Srinivasan, R., & Petrovic, S. (2006). MEG phase follows conscious perception during binocular rivalry induced by visual stream segregation. Cerebral Cortex, 16, 597–608.

Stensaas, S. S., Eddington, D. K., & Dobelle, W. H. (1974). The topography andvariability of the primary visual cortex in man. Journal of Neurosurgery, 40,747–755.

Stevenson, S. B., Cormack, L. K., Schor, C. M., & Tyler, C. W. (1992). Disparity tuning in mechanisms of human stereopsis. Vision Research, 32, 1685–1694.

Sterzer, P., Kleinschmidt, A., & Ress, G. (2009). The neural bases of multistable perception. Trends in Cognitive Sciences, 13, 310–318.

Sun, J., & Perona, P. (1998). Where is the sun? Nature Neuroscience, 1, 183–184.

Swisher, J. D., Halko, M. A., Merabet, L. B., McMains, S. A., & Somers, D. C. (2007).Visual topography of human intraparietal sulcus. Journal of Neuroscience, 27(20),5326–5337.

Sylvester, R., Haynes, J. D., & Rees, G. (2005). Saccades differentially modulatehuman LGN and V1 responses in the presence and absence of visual stimulation.Current Biology, 15(1), 37–41.

Sylvester, R., & Rees, G. (2006). Extraretinal saccadic signals in human LGN and early retinotopic cortex. NeuroImage, 30(1), 214–219.

Tanaka, J.W., & Sengco, J. A. (1997). Features and their configuration in face recognition. Memory & Cognition, 25(5), 583–592.

Tarr, M. J., & Bülthoff, H. H. (1995). Is human object recognition better described by Geon structural descriptions or by multiple views – Comment on Biedermanand Gerhardstein (1993). Journal of Experimental Psychology–Human Perceptionand Performance, 21, 1494–1505.

Tarr, M. J., & Pinker, S. (1989). Mental rotation and orientation-dependence in

shape-recognition. Cognitive Psychology, 21, 233–282.

Taya, S., Sato, M., & Nakamizo, S. (2005). Stereoscopic depth aftereffects without retinal position correspondence between adaptation and test stimuli. Vision Research, 45, 1857–1866.

Teghtsoonian, R., & Teghtsoonian, M. (1970). Scaling apparent distance in a natural outdoor setting. Psychonomic Science, 21, 215–216.

Teller, D. Y., Pereverzeva, M., & Zemach, I. K. (2006). Infant color perception and discrete trial preferential looking paradigms. In N. Pitchford & C. P. Biggam (Eds.), Progress in colour studies. Vol. II: Psychological aspects (pp. 69–90).Amsterdam: John Benjamin.

Tong, F., & Engel, S. A. (2001). Interocular rivalry revealed in the human corticalblind-spot representation. Nature, 411, 195–199.

Tong, F., & Nakayama, K. (1999). Robust representations for faces evidence fromvisual search. Journal of Experimental Psychology Human Perception andPerformance, 25, 1016–1035.

Tononi, G., Srinivasan, R., Russell, D. P., & Edelman, G. M. (1998). Investigatingneural correlates of conscious perception by frequency-tagged neuromagneticresponses. Proceedings of the National Academy of Sciences of the United States of America, 95, 3198–3203.

Tootell, R. B. H., Mendola, J. D., Hadjikhani, N. K., Ledden, P. J., Liu, A. K., Reppas, J. B.,et al. (1997). Functional analysis of V3A and related areas in human visual cortex. Journal of Neuroscience, 17(18), 7060–7078.

Tootell, R. B., Tsao, D., & Vanduffel, W. (2003). Neuroimaging weighs in: Humansmeet macaques in ‘‘primate” visual cortex. Journal of Neuroscience, 23(10),3981–3989.

Troje, N. F., & Kersten, D. (1999). Viewpoint-dependent recognition of familiar faces. Perception, 28, 483–487.

Tsirlin, I., Wilcox, L. M. & Allison, R. S. (2010) Monocular occlusions     determine the perceived shape and depth of occluding surfaces. Journal     of Vision, 10(6).

Tyler, C. W. (1998). Diffuse illumination as a default assumption for shape-fromshading in graded images. Journal of Image Science and Technology, 42, 319–325.

van Ee, R. (2009). Stochastic variations in sensory awareness are driven by noisyneuronal adaptation: Evidence from serial correlations in perceptual bistability. Journal of the Optical Society of America A, 26, 2612–2622.

van Ee, R., Adams, W. J., & Mamassian, P. (2003). Bayesian modeling of cueinteraction: Bistability in stereoscopic slant perception. Journal of the Optical Society of America B, 20, 1398–1406.

Van Ee, R., Banks, M. S., & Backus, B. T. (1999). Perceived visual direction near an occluder. Vision Research, 39, 4085–4097.

van Essen, D. C. (2010). Caret Software. Available from: <http://www.nitrc.org/projects/caret/>.

Vanni, S., Henriksson, L., & James, A. C. (2005). Multifocal fMRI mapping of visualcortical areas. NeuroImage, 27(1), 95–105.

Wandell, B. A., Chial, S., & Backus, B. (2000). Visualization and measurement of the cortical surface. Journal of Cognitive Neuroscience, 12(5), 739–752.

Wandell, B. A., Dumoulin, S. O., & Brewer, A. A. (2007). Visual field maps in humancortex. Neuron, 56(2), 366–383.

Watanabe, T., & Cavanagh, P. (1991). Texture and motion spreading, transparencyand the aperture problem. Perception & Psychophysics, 50, 459–464.

Weiner, K. S., & Grill-Spector, K. (2010). Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Neuroimage, 52(4),1559–1573. Oct 1.

Wensveen, J. M., Harwerth, R. S., Hung, L.-F., Ramamirtham, R., Kee, C., & Smith, E. L. III, (2006). Brief daily periods of unrestricted vision can prevent formdeprivation amblyopia. Investigative Ophthalmology & Visual Science, 47,2468–2477.

Westendorf, D. H., Langston, A., Chambers, D., & Allegretti, C. (1978). Binoculardetection by normal and stereo-blind observers. Perception & Psychophysics, 24,209–214.

Westwood, D. A., Chapman, C. D., & Roy, E. A. (2000). Pantomimed actions may becontrolled by the ventral visual stream. Experimental Brain Research, 130(4),545–548.

Westwood, D. A., & Goodale, M. A. (2003). Perceptual illusion and the real-timecontrol of action. Spatial Vision, 16(3–4), 243–254.

Wilson, H. R. (1999). Non-Fourier cortical processes in texture, form, and motionperception. In P. S. Ulinski & E. G. Jones (Eds.), Cerebral cortex. Models of cortical circuitry (Vol. 13, pp. 445–477). New York: Plenum.

Wilson, H. R. (2003). Computational evidence for a rivalry hierarchy in vision.Proceedings of the National Academy of Sciences of the United States of America,100, 14499–14503.

Wilson, H. R. (2007). Minimal physiological conditions for binocular rivalry andrivalry memory. Vision Research, 47, 2741–2750.

Wilson, H. R. (2009). Requirements for conscious visual processing. In L. Harris & M. Jenkin (Eds.), Cortical mechanisms of vision (pp. 399–417). Cambridge:Cambridge University Press.

Wilson, H. R., Blake, R., & Lee, R. (2001). Dynamics of travelling waves in visualperception. Nature, 412, 907–910.

Winawer, J., Horiguchi, H., Sayres, R. A., Amano, K., & Wandell, B. A. (2010). Mapping hV4 and ventral occipital cortex: The venous eclipse. Journal of Vision, 10(5),1–22.

Wunderlich, G., Schneider, K. A., & Kastner, S. (2005). Neural correlates of binocular rivalry in the human lateral geniculate nucleus. Nature Neuroscience, 8, 1595–1602.

Yang, Y., & Blake, R. (1995). On the accuracy of surface reconstruction from disparity information. Vision Research, 35, 949–960.

Yellott, J. I. Jr, (1981) Binocular depth inversion. Scientific American, 245(1), 118-125.

Yellott, J. I. Jr. &  Kaiwi, J. I. (1979) Depth inversion despite stereopsis: the appearance of random-dot stereograms on surfaces seen in reverse perspective. Perception, 8, 135-142.

Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81(1), 141–145.

Zeki, S. M., Watson, J. D., Lueck, C. J., Friston, K. J., Kennard, C., & Frackowiak, R. S.(1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience, 11(3), 641–649.