参考文献

Afraz, A., Pashkam, M. V., & Cavanagh, P. (2010) Spatial heterogeneity in the

  perception of face and form attributes. Current Biology: CB, 20(23), 2112–2116.

Andrews, T. J., & Purves, D. (1997). Similarities in normal and binocularly

  rivalrous viewing. Proceedings of the National Academy of Sciences of the United

  States of America, 94, 99059908.

Anzai, A., Ohzawa, I., & Freeman, R. D. (1999). Neural mechanisms for encoding

  binocular disparity: Receptive field position versus phase. Journal of

  Neurophysiology, 82, 874–890.

Apkarian, P., Bour, L., Barth, P., Wenniger-Prick, L., & Verbeeten, B. (1995). Non-

  decussating retinalfugal fibre syndrome. Brain, 118, 1195–1216.

Baker, D. H., Meese, T. S., & Hess, R. F. (2008). Contrast masking in strabismic

  amblyopia: Attenuation, noise, interocular suppression and binocular

  summation. Vision Research, 48(15), 1625–1640.

Baker, D. H., Meese, T. S., Mansouri, B., & Hess, R. F. (2007). Binocular

  summation of contrast remains intact in strabismic amblyopia. Investigative

  Ophthalmology & Visual Science, 48(11), 5332–5338.

Baird, J. C., & Wagner, M. (1991). Transformation theory of size judgment. Journal

  of Experimental Psychology: Human Perception and Performance, 17, 852–864.

Ban, H., Yamamoto, H., Hanakawa, T., Urayama, S. I., Aso, T., Fukuyama, H., et al.

  (2013). Topographic representation of an occluded object and the effects of

  spatiotemporal context in human early visual areas. The Journal of Neuroscience,

  33(43), 16992–17007.

Bekkering, H., & Neggers, S. F. W. (2002). Visual search is modulated by action  

  intentions. Psychological Science: A Journal of the American Psychological

  Society / APS, 13(4), 370–374.

Blake, R. (1989). A neural theory of binocular rivalry. Psychological Review, 96,

  145–167.

Bozzacchi, C., & Domini, F. (2015). Lack of depth constancy for grasping

  movements in both virtual and real environments. Journal of Neurophysiology,

  114(4), 2242–2248.

Bradshaw, M. F., Hibbard, P. B., Parton, A. D., Rose, D., & Langley, K. (2006).

  Surface orientation, modulation frequency and the detection and perception of

  depth defined by binocular disparity and motion parallax. Vision Research, 46,

  2636–2644.

Bradshaw, M. F., & Rogers, B. J. (1999). Sensitivity to horizontal and vertical

  corrugations defined by binocular disparity. Vision Research, 39, 3049–3056.

Brandt, T., Dichgans, J. M., & Koenig, E. (1973)  Differential effects of central

  versus peripheral vision on egocentric and exocentric motion perception.

  Experimental Brain Research, 16, 476–491.

Brascamp, J., Blake, R., & Knapen, T. (2015). Negligible fronto-parietal BOLD

  activity accompanying unreportable switches in bistable perception. Nature

  Neuroscience, 18(11), 1672–1678.

Bridgeman, B., Kirch, M., & Sperling, A. (1981) Segregation of cognitive and motor  

  aspects of visual function using induced motion. Perception & Psychophysics, 29(4),

  336–342. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7279556.

Breese, B. B. (1899). On inhibition. Psychological Monographs, 3, 1–65.

Burr, D. C., Morrone, M. C., & Ross, J. (2001) Separate visual representations for

  perception and action revealed by saccadic eye movements. Current Biology: CB,

  11(10), 798–802. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11378393.

Cartwright, B. A., & Collett, T. S. (1983). Landmark learning in bees: Experiments and  

  models. Journal of Comparative Physiology, 151, 521–543.

Cass, J., & Van der Burg, E. (2014). Remote temporal camouflage: Contextual flicker

 disrupts perceived visual temporal order. Vision Research, 103, 92–100.

Casati, R. (2004). The shadow knows: A primer on the informational structure of cast

  shadows. Perception, 33, 1385–1396.

Chadnova, E., Reynaud, A., Clavagnier, S., & Hess, R. (2016). Dichoptic imbalance of

  luminance affects the phase component of steady-state MEG signals. Journal of

  Vision, 16(12), 433.

Chrastil, E. R., & Warren, W. H. (2014). From cognitive maps to cognitive graphs. PLoS

  One, 9(11), e112544.

Craighero, L., Fadiga, L., Rizzolatti, G., Umilt`a, C.(1999). Action for perception. A

  motor - visual attentional effect. Journal of Experimental Psychology. Human

  Perception & Performance, 25(6), 1673–1692.

Cumming, B. G. B., Shapiro, S. E. S., & Parker, A. J.A. (1998). Disparity detection in

  anticorrelated stereograms. Perception, 27, 1367–1377.

DeAngelis, G. C., & Uka, T. (2003). Coding of horizontal disparity and velocity by MT

  neurons in the alert macaque. Journal of Neurophysiology, 89, 1094–1111.

Diamond, R., & Carey, S. (1986). Why faces are and are not special: An effect of 

  expertise. Journal of Experimental Psychology. General, 115(2), 107–117.

Doerschner, K., Kersten, D., & Schrater, P. R. (2011)  Rapid classification of specular

  and diffuse reflection from image velocities. Pattern Recognition, 44, 1874–1884.

Doerschner, K., Yilmaz, O., Kucukoglu, G., & Fleming, R. W. (2013). Effects of surface  

  reflectance and 3d shape on perceived rotation axis. Journal of Vision, 13(11):8, 1–23.

Doi T., Takano, M., & Fujita, I. (2013). Temporal channels and disparity

  representations in stereoscopic depth perception. Journal of Vision, 13(13): 26, 1–25,

Doi, T., Tanabe, S., & Fujita, I. (2011). Matching and correlation computations in

  stereoscopic depth perception. Journal of Vision, 11(3):1, 1–16.

Dovencioglu, D. N., Wijntjes, M. W., Ben-Shahar, O., & Doerschner, K. (2015). Effects

  of surface reflectance on local second order shape estimation in dynamic scenes.

  Vision Research, 115, 218–230.

Duffy, C. J., & Wurtz, R. H. (1991a). Sensitivity of MST neurons to optic flow stimuli. I.

  A continuum of response selectivity to large-field stimuli. Journal of Neurophysiology,

  65(6), 1329–1345.

Duffy, C. J., & Wurtz, R. H. (1991b). Sensitivity of MST neurons to optic flow stimuli.

  II. Mechanisms of Response Selectivity Revealed by Small-Field Stimuli. Journal of

  Neurophysiology, 65(6), 1346–1359.

Duffy, C. J., & Wurtz, R. H. (1995). Response of monkey MST neurons to optic flow

 stimuli with shifted centers of motion. Journal of Neuroscience, 15, 5192–5208.

Fagioli, S., Hommel, B., & Schubotz, R. I. (2007). Intentional control of attention:

  Action planning primes action-related stimulus dimensions. Psychological Research,

  71(1), 22–29.

Farah, M. J., Wilson, K. D., Drain, H. M., & Tanaka, J. R. (1995). The inverted face

  inversion effect in prosopagnosia: Evidence for mandatory, face-specific perceptual   

  mechanisms. Vision Research, 35(14), 2089–2093.

Fleming, R. W. (2012). Human perception: Visual heuristics in the perception of

  glossiness. Current Biology, 22, R865–R866.

Flombaum, J. I., Scholl, B. J., & Santos, L. R. (2009). Spatiotemporal priority as a

 fundamental principle of object persistence. The origins of object knowledge,135–164.

Foley, J. M. (1977). Effect of distance information and range on two indices of visually

  perceived distance. Perception, 6(4), 449–460.

Foley, J. M. (1980). Binocular distance perception. Psychological Review, 87(5), 411–434.

Foley, J. M., Ribeiro-Filho, N. P., & Da Silva, J. A. (2004). Visual perception of extent

  and the geometry of visual space. Vision Research, 44, 147–156.

Franz, M. O., Sch¨olkopf, B., Mallot, H. A., & B¨ulthoff, H. H. (1998). Where did I take

 that snapshot? Scene-based homing by image matching. Biological Cybernetics, 79,

 191–202.

Gillner, S., & Mallot, H. A. (1998). Navigation and acquisition of spatial knowledge in a

  virtual maze. Journal of Cognitive Neuroscience, 10(4), 445–463.

Gilinsky, A. S. (1951). Perceived size and distance in visual space. Psychological

  Review, 58, 460–482.

Graham, P., & Cheng, K. (2009). Which portion of the natural panorama is used for

  view-based navigation in the Australian desert ant? Journal of Comparative

  Physiology A, 195(7), 681–689.

Graham, P., & Collett, T. S. (2002). View-based navigation in insects: How wood ants

  (Formica rufa l.) look at and are guided by extended landmarks. Journal of

  Experimental Biology, 205, 2499–2509.

Greenwood, J. A., Szinte, M., Sayim, B., & Cavanagh, P. (2017)  Variations in

  crowding, saccadic precision, and spatial localization reveal the shared topology of

  spatial vision. Proceedings of the National Academy of Sciences, USA, 114(17),

  E3573–E3582.

Goodale, M. A., Milner, A. D., Jakobson, L. S., & Carey, D. P. (1991)  A neurological

 dissociation between perceiving objects and grasping them. Nature, 349(6305),

 154–156, doi:10.1038/ 349154a0.

Goodale, M. A., & Milner, A. D. (1992) Separate visual pathways for perception and

  action. Trends in Neurosciences, 15(1), 20–25. Retrieved from  

  http://www.ncbi.nlm.nih.gov/pubmed/1374953.

Graziano, M. S., Hu, X. T., & Gross, C. G. (1997). Coding the locations of objects in the

  dark. Science, 277(5323), 239–241.

Grossman, E., & Blake, R. (2002). Brain areas active during visual perception of

  biological motion. Neuron, 35(6), 1167–1175.

Gu, Y., Watkins, P. V., Angelaki, D. E., & DeAngelis, G. C. (2006). Visual and nonvisual

  contributions to three-dimensional heading selectivity in the medial superior

  temporal area. Journal of Neuroscience, 26(1), 73–85.

Gu, Y., DeAngelis, G. C., & Angelaki, D. E. (2012) Causal links between dorsal medial  

  superior temporal area neurons and multisensory heading perception. Journal of

  Neuroscience, 32(7), 2299–2313.

Gutteling, T. P., Kenemans, J. L., & Neggers, S. F. W. (2011). Grasping preparation

 enhances orientation change detection. PLoS ONE, 6(3), e17675,

Gutteling, T. P., Park, S. Y., Kenemans, J. L., & Neggers, S. F. W. (2013). TMS of the

  anterior intraparietal area selectively modulates orientation change detection during

  action preparation. Journal of Neurophysiology, 110(1), 33–41.

Hannus, A., Cornelissen, F. W., Lindemann, O., & Bekkering, H. (2005).  

  Selection-for-action in visual search [1–2 Special issue]. Acta Psychologica, 118,

  171–191.

Helmholtz, H. (1925). Handbook of physiological optics [Electronic book from Ben

  Backus, University of Pennsylvania, 2001] (J. P. C. Southall, Trans., Vol. 3). New

  York, NY: Optical Society of America.

Hoffmann, M. B., Tolhurst, D. J., Moore, A. T., & Morland, A. B. (2003). Organization of

  the visual cortex in human albinism. Journal of Neuroscience, 23, 8921–8930.

Hollingworth, A., & Franconeri, S. L. (2009). Object correspondence across brief

 occlusion is established on the basis of both spatiotemporal and surface feature cues.

 Cognition, 113(2), 150–166.

Howard, I. P., & Heckmann, T. (1989). Circular vection as a function of the relative  

  sizes, distances, and positions of two competing visual displays. Perception, 18(5),

  657–665.

Howard, I., & Rogers, B. J. (2012). Perceiving in depth, volume 2: Stereoscopic vision.

 Oxford:Oxford University Press.

Huang, P. C., Baker, D. H., & Hess, R. F. (2012). Interocular suppression in normal and

  amblyopic vision: Spatio-temporal properties. Journal of Vision, 12(11). 29-29.

Hubel, D. H., & Wiesel, T. N. (1965). Binocular interaction in striate cortex of kittens

  reared with artificial squint. Journal of Neurophysiology, 28, 1041–1059.

Hulme, O. J., & Zeki, S. (2007). The sightless view: neural correlates of occluded

  objects. Cerebral Cortex, 17(5), 1197–1205.

Johansson, G. (1973). Visual perception of biological motion and a model for its 

  analysis. Perception & Psychophysics, 14(2), 201–211.

Jones, R. (1977). Anomalies of disparity detection in the human visual system. The J

  ournal of Physiology, 264, 621.

Kalil, R. E., Jhaveri, S. R., & Richards, W. (1971). Anomalous retinal pathways in the

  Siamese cat: An inadequate substrate for normal binocular vision. Science, 174,

  302–305.

Karsch, K., Liu, C., & Kang, S. (2012). Depth extraction from video using

  non-parametric sampling. Proceedings of the European Conference on Computer

  Vision, 7576, 775–788.

Kamihirata, H., Oga, T., Aoki, S. C., & Fujita, I. (2015). A gap between adjacent

  surfaces deteriorates depth perception based on binocular correlation computation.

  Journal of Physiological Sciences, 65(Suppl. 1), S155.

Kersten, D., Knill, D. C., Mamassian, P., & Bu¨ lthoff, I. (1996). Illusory motion from  

 shadows. Nature,379, 31.

Kleffner, D. A., & Ramachandran, V. S. (1992). On the perception of shape from

  shading. Perception and Psychophysics, 52, 18–36.

Knapen, T., Kanai, R., Brascamp, J. W., van Boxtel, J., & van Ee, R. (2007). Distance in

  feature space determines exclusivity in visual rivalry. Vision Research, 47,

  3269–3275.

Koenderink, J. J., van Doorn, A. J., Kappers, A. M. L., te Pas, S. F., & Pont, S. C.

  (2003). Illumination direction from texture shading. Journal of the Optical Society of

  America  A, 20, 987–995.

Koenderink, J. J., van Doorn, A. J., & Pont, S. C. (2004). Light direction from

  shad(ow)ed random Gaussian surfaces. Perception, 33, 1405–1420.

Komatsu, H. (2006). The neural mechanisms of perceptual filling-in. Nature Reviews

  Neuroscience, 7(3), 220–231, doi:10.1038/nrn1869.

Kourtzi, Z., & Kanwisher, N. (2001). Representation of perceived object shape by the

 human lateral occipital complex. Science, 293(5534), 1506–1509.

Kovács, G. Y., Vogels, R., & Orban, G. A. (1995). Selectivity of macaque inferior temporal

  neurons for partially occluded shapes. The Journal of neuroscience, 15  (3),

  1984–1997.

Kowler, E. (2011). Eye movements: The past 25 years. Vision Research, 51(13),

 1457–1483.

Landers, D. D., & Cormack, L. K. (1997). Asymmetries and errors in perception of

  depth from disparity suggest a multicomponent model of disparity processing.

  Perception & Psychophysics, 59, 219–231.

Legge, G. E. (1984). Binocular contrast summation–II. Quadratic summation.  

  Vision Research, 24, 385–394.

Legge, G. E., & Rubin, G. S. (1981). Binocular interactions in suprathreshold

  contrast perception. Perception & Psychophysics, 30, 49–61.

Logothetis, N. K., Leopold, D. A., & Sheinberg, D. L. (1996, Apr 18). What is rivalling

  during binocular rivalry? Nature, 380, 621–624.

Mamassian P. (2004). Impossible shadows and the shadow correspondence problem.

  Perception, 33, 1279–1290.

Mamassian, P., & Goutcher, R. (2001). Prior knowledge on the illumination position.

 Cognition, 81, B1–B9.

Mansouri, B., Thompson, B., & Hess, R. F. (2008). Measurement of suprathreshold

  binocular interactions in amblyopia. Vision Research, 48(28), 2775–2784.

Maurer, D., Grand, R. Le., & Mondloch, C. J. (2002). The many faces of configural

  processing. Trends in Cognitive Sciences, 6(6), 255–260.

McCormack, G. L. (1985). Vergence adaptation maintains heterophoria in normal

 binocular vision. American Journal of Optometry and Physiological Optics, 62(8),

  555–561. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4037062.

Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed.

  Neuropsychologia, 46(3), 774–785, doi:10.1016/j.neuropsychologia.2007.10.005.

Moore, C. M., Stephens, T., & Hein, E. (2010). Features, as well as space and time,

  guide object persistence. Psychonomic bulletin & review, 17(5), 731–736.

Morgenstern, Y., Murray, R. F., & Harris, L.R. (2011). The human visual system’s

  assumption that light comes from above is weak. Proceedings of the National

  Academy of Sciences, USA, 108, 12551–12553.

Moutsiana, C., de Haas, B., Papageorgiou, A., van Dijk, J. A., Balraj, A., Greenwood, J.

  A., & Schwarzkopf, D. S. (2016)  Cortical idiosyncrasies predict the perception of

  object size. Nature Communications, 7, 12110.

Nakamura, S. (2008). Effects of stimulus eccentricity on vection reevaluated with a

  binocularly defined depth. Japanese Psychological Research, 50(2), 77–86.

Nakamura, S., & Shimojo, S. (1998). Stimulus size and eccentricity in visually induced

  perception of horizontally translational self-motion. Perceptual and Motor Skills,

  87(2), 659–663.

North, R., & Henson, D. B. (1981). Adaptation to prism-induced heterophoria in

  subjects with abnormal binocular vision or asthenopia. American Journal of

  Optometry and Physiological Optics, 58(9), 746–752. Retrieved from http://www.

  ncbi.nlm.nih.gov/pubmed/7294146.

Ooi, T. L., & He, Z. J. (2007). A distance judgment function based on space perception

  mechanisms:Revisiting Gilinsky’s (1951) equation. Psychological Review, 114,

  441–454.

OShea, R. P. (1998). Effects of orientation and spatial frequency on monocular and

  binocular rivalry. In N. Kasabov, R. Kozma, K. Ko, R. OShea, G. Coghill, & T. Gedeon

  (Eds.), Progress in connectionist-based information systems: Proceedings of the 1997

  International Conference on Neural Information Processing and Intelligent

  Information Systems (pp. 6770). Singapore:Springer Verlag.

OShea, R. P., Parker, A., La Rooy, D. J., & Alais, D. (2009). Monocular rivalry exhibits

  three hallmarks of binocular rivalry: Evidence for common processes. Vision

  Research, 49, 671681.

O’Shea, J. P., Agrawala, M., & Banks, M. S. (2010) The influence of shape cues on the

  perception of lighting direction. Journal of Vision, 10(12):21, 1–21.

Ostrovsky, Y., Cavanagh, P., & Sinha, P. (2005) Perceiving illumination inconsistencies

  in scenes. Perception, 34, 1301–1314.

Pearson, J., & Clifford, C. W. G. (2005). When your brain decides what you see:

  Grouping across monocular, binocular, and stimulus rivalry. Psychological Science,

  16, 516519.

Prieur, D. S., & Rebsam, A. (2016). Retinal axon guidance at the midline: Chiasmatic

  misrouting and consequences. Developmental Neurobiology, 77, 844860.

Prince, S., Cumming, B., & Parker, A. (2002). Range and mechanism of encoding of

  horizontal disparity in macaque V1. Journal of Neurophysiology, 87, 209–221.

Peterson, M. A., & Salvagio, E. (2008). Inhibitory competition in figure-ground

  perception: Context and convexity. Journal of Vision, 8(16):4, 1–13.

Ramachandran, V. S. (1988a). Perception of shape from shading. Nature, 331, 163–166.

Ramachandran, V. S. (1988b). Perceiving shape from shading. Scientific American, 259,  

  58–65.

Rauschenberger, R., Liu, T., Slotnick, S. D., & Yantis, S. (2006). Temporally unfolding

  neural representation of pictorial occlusion. Psychological Science, 17(4), 358–364.

Richards, W. (1971). Anomalous stereoscopic depth perception. Journal of the Optical

  Society of America, 61, 410–414.

Rogers, B. J., & Graham, M. E. (1982). Similarities between motion parallax and

  stereopsis in human depth perception. Vision Research, 22, 261–270.

Rossion, B., & Gauthier, I. (2002). How does the brain process upright and inverted

  faces? Behavioral and Cognitive Neuroscience Reviews, 1(1), 63–75.

Rushton, S. K., & Warren, P. A. (2005). Moving observers, relative retinal motion and

  the detection of object movement. Current Biology, 15, R542–R543.

Saiki, J. (2003). Spatiotemporal characteristics of dynamic feature binding in visual

 working memory. Vision Research, 43(20), 2107–2123.

Saito, H., Yukie, M., Tanaka, K., & Hikosaka, K. (1986). Integration of direction signals

  of image motion in the superior temporal sulcus of the macaque monkey. Journal of   

  Neuroscience, 6, 145–157.

Sasaki, R., Angelaki, D. E., & DeAngelis, G. C. (2013). Estimating heading in the

  presence of moving objects: Population decoding of activity from area MSTd. Society

  Neuroscience Abstracts, 39, 360.17.

Schor, C. M. (1979). The relationship between fusional vergence eye movements

  and fixation disparity. Vision Research, 19(12), 1359–1367. Retrieved from

  http://www.ncbi.nlm.nih.gov/pubmed/532102.

Serrano-Pedraza, I., Brash, C., & Read, J. C. (2013). Testing the horizontal-vertical  

  stereo anisotropy with the critical-band masking paradigm. Journal of Vision, 13(11),

  15.

Serrano-Pedraza, I., Herbert, W., Villa-Laso, L., Widdall, M., Vancleef, K., & Read, J. C.

  A. (2016). The stereoscopic anisotropy develops during childhood. Investigative

  Ophthalmology and Visual Science, 1(57), 960–970.

Serrano-Pedraza, I., & Read, J. C. (2010). Multiple channels for horizontal, but only one

  for vertical corrugations? A new look at the stereo anisotropy. Journal of Vision 10, 10.

Silver, M., & Logothetis, N. K. (2007). Temporal frequency and contrast tagging bias

  the type of competition in interocular switch rivalry. Vision Research, 47, 532–543.

Stuit, S. M., Paffen, C. L. E., van der Smagt, M. J., & Verstraten, F. A. J. (2014).

  Image-based grouping during binocular rivalry is dictated by eye-oforigin. PloS ONE,

  9(7), e95327.

Schumer, R., & Ganz, L. (1979). Independent stereoscopic channels for different extents

  of spatial pooling. Vision Research, 19, 1303–1314.

Schwarzkopf, D. S., Song, C., & Rees, G. (2011)  The surface area of human V1

  predicts the subjective experience of object size. Nature Neuroscience, 14(1), 28–30.

Szinte, M., & Cavanagh, P. (2011). Spatiotopic apparent motion reveals local variations

  in space constancy. Journal of Vision, 11(2):4.

Tanabe, S., Yasuoka, S., & Fujita, I. (2008). Disparityenergy signals in perceived

  stereoscopic depth. Journal of Vision, 8(3):22, 1–10.

Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. The

  Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology,

  46(2), 225–245.

Tanaka, K., Hikosaka, K., Saito, H., & Yukie, M. (1986). Analysis of local and wide-field

  movements in the superior temporal visual areas of the macaque monkey. Journal of

  Neuroscience, 6, 134–144.

Tanaka, J. W., & Sengco, J. A. (1997). Features and their configuration in face 

  recognition. Memory & Cognition, 25(5), 583–592.

Thomas, O. M., Cumming, B. G., & Parker, A. J.(2002). A specialization for relative

  disparity in V2. Nature Neuroscience, 5, 472–478.

Tong, F., & Engel, S. A. (2001, May 10). Interocular rivalry revealed in the human

  cortical blind-spot representation. Nature, 411, 195–199.

Tong, F., Meng, M., & Blake, R. (2006). Neural bases of binocular rivalry. Trends in

  Cognitive Sciences,10, 502–511.

Tscherning, M. H. E. (1898). Optique physiologique [Physiological optics]. Paris,

  France: Masson and others, Booksellers of the Academy of Medicine.

Tyler, C. W. (1974). Depth perception in disparity gratings. Nature, 251(140–142), 1974.

Tyler, C. W. (1990). A stereoscopic view of cortical processing streams. Vision Research,

  30, 1877–1895.

Tyler, C. W., Barghout, L., & Kontsevich, L. L. (1994). Computational reconstruction of

  the mechanisms of human stereopsis. In T. B. Lawton (Ed.). Computational vision  

  based on neurobiology. Park Grove, CA: SPIE International Society Optical

  Engineering.

Tyler, C. W., & Julesz, B. (1978). Spatial frequency tuning for disparity grating in the

 cyclopean retina. Journal of the Optical Society of America, 68, 1365.

van Boxtel, J. J. A., Knapen, T., Erkelens, C. J., & van Ee, R. (2008). Removal of

  monocular interactions equates rivalry behavior for monocular, binocular, and

  stimulus rivalries. Journal of Vision, 8, 1–17.

Wagner, M. (1985). The metric of visual space. Perception & Psychophysics, 38,

  483–495.

Wilson, H. R. (2003). Computational evidence for a rivalry hierarchy in vision.

  Proceedings of the National Academy of Sciences, USA, 100(24),14499–1450,.

Xia, L., Pont, S. C., & Heynderickx, I. (2014). The visual light field in real scenes.

  i-Perception, 5, 613–629.

Zou, J., He, S., & Zhang, P. (2016). Binocular rivalry from invisible patterns.  

  Proceedings of the National Academy of Sciences, 113(30), 8408–8413.

  http://dx.doi.org/10.1073/pnas.1604816113.