参考文献

Alais, D., & Melcher, D. (2007). Strength and coherence of binocular rivalry depends on

  shared stimulus complexity. Vision Research, 47(2), 269–279.

Anstis, S. M., Howard, I. P., & Rogers, B. (1978). A Craik-O’Brien-Cornsweet illusion for

  visual depth. Vision Research, 18(2), 213–217.

Atkinson, J., & Braddick, O. (1976). Stereoscopic discrimination in infants. Perception,

  5(1), 29–38.

Backus, B. T., Fleet, D. J., Parker, A. J., & Heeger, D.J. (2001). Human cortical activity  

  correlates with stereoscopic depth perception. Journal of Neurophysiology, 86,

  2054–2068.

Baker, C. L., & Mareschal, I. (2001). Processing of second-order stimuli in the visual

  cortex. Progress in Brain Research, 134, 171–191.

Berends, E. M., Liu, B., & Schor, C. M. (2005). Stereo-slant adaptation is high level and

  does not involve disparity coding. Journal of Vision, 5, 71–80.

Biederman, I. (1987). Recognition-by-components: a theory of human image

  understanding. Psychological Review, 94(2), 115.

Biederman, I., & Cooper, E. E. (1991). Priming contour-deleted images: Evidence for

  intermediate representations in visual object recognition. Cognitive Psychology, 23(3),  

  393–419.

Birch, E. E., Gwiazda, J., & Held, R. (1983). The development of vergence does not

  account for the onset of stereopsis. Perception, 12(3), 331–336.

Blake, R., & Logothetis, N. K. (2002). Visual competition. Nature Reviews Neuroscience,  

  3(1), 13–21.

Blake, R., O’Shea, R. P., & Mueller, T. J. (1992). Spatial zones of binocular rivalry in

 central and peripheral vision. Visual Neuroscience, 8(5), 469–478.

Bossink, C. J. H., Stalmeier, P. F. M., & de Weert, C. M. M. (1993). A test of Levelt’s  

  second proposition for binocular rivalry. Vision Research, 33(10), 1413–1419.

Brascamp, J. W., van Ee, R., Noest, A. J., Jacobs, R. H. A. H., & van den Berg, A. V.

  (2006). The time course of binocular rivalry reveals a fundamental role of noise.   

  Journal of Vision, 6(11), 1244–1256. http://dx.doi.org/10.1167/6.11.8.

Brascamp, J. W., Klink, P. C., & Levelt, W. J. M. (2015). The “laws” of binocular rivalry:

  50 years of Levelt’s propositions. Vision Research, 109, 20–37.

Cammack, P., & Harris, J. M. (2016). Depth perception in disparity-defined objects:

  Finding the balance between averaging and segregation. Philosophical Transactions

  of the Royal Society of London: B,371(1697), 20150258.

Carter, O. L., & Pettigrew, J. D. (2003). A common oscillator for perceptual rivalries?

  Perception, 32(3), 295–305.

Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion

  perception. Current Biology, 16(1), 69–74.

Chino, Y. M., Smith, E. L., III, Hatta, S., & Cheng, H. (1997) Postnatal development of

  binocular disparity sensitivity in neurons of the primate visual cortex. Journal of

  Neuroscience, 17(1), 296–307.

Cisarik, P. M., & Harwerth, R. S. (2008). The effects of interocular correlation and

  contrast on stereoscopic depth magnitude estimation. Optometry and Vision

  Science, 85, 164–173.

Cloete, S., & Wallis, G. (2011). Visuomotor control of steering: The artefact of the

  matter. Experimental Brain Research, 208, 475–489.

DeAngelis, G. C., Ohzawa, I., & Freeman, R. D. (1991,July 11). Depth is encoded in

  the visual cortex by a specialized receptive field structure. Nature, 3 52(6331),

  156–159.

Deas, L. M., & Wilcox, L. M. (2014). Gestalt grouping via closure degrades

  suprathreshold depth percepts. Journal of Vision, 14(9):14, 1–13.

Deas, L. M., & Wilcox, L. M. (2015). Perceptual grouping via binocular disparity: The

  impact of stereoscopic good continuation. Journal of Vision, 15(11):11, 1–13,

Dichgans, J., & Brandt, T. (1978). Visual-vestibular interaction: Effects on  

  self-motion perception and postural control. In R. Held, H.W. Leibowitz, & H.L.

  Teuber (Eds.), Handbook of sensory physiology, (Vol. 8, pp. 755–804). Heidelberg,  

  Berlin: Springer.

Doi, T., Tanabe, S., & Fujita, I. (2011). Matching and correlation computations in

  stereoscopic depth perception Journal of Vision, 11(3):1.

Fahle, M. (1982). Binocular rivalry: Suppression depends on orientation and spatial

  frequency. Vision Research, 22(7), 787–800.

Fahle, M. (1983). Non-fusable stimuli and the role of binocular inhibition in normal

  and pathologic vision, especially strabismus. Documenta Ophthalmologica, 55(4),

  323–340.

Fox, R., Aslin, R. N., Shea, S. L., & Dumais, S. T. (1980, January 18). Stereopsis in

  human infants. Science, 207(4428), 323–324.

Frissen, I., & Mars, F. (2014). The effect of visual degradation on anticipatory and

  compensatory steering control. The Quarterly Journal of Experimental

  Psychology, 67, 499–507.

Gallagher, R. M., & Arnold, D. H. (2014). Interpreting the temporal dynamics of

  perceptual rivalries. Perception, 43(11), 1239–1248.

Grabe, S., Ward, L. M., & Hyde, J. S. (2008). The role of the media in body image  

  concerns among women: A meta-analysis of experimental and correlational   

  studies. Psychological Bulletin, 134, 460–476.

Harris, L. R., Jenkin, M., & Zikovitz, D. C. (2000) Visual and non-visual cues in the   

  perception of linear self-motion. Experimental Brain Research, 135, 12–21.

Harris, L. R., Jenkin, M. R., Zikovitz, D., Redlick, F., Jaekl, P., Jasiobedzka, U. T.,

  Allison, R. S. (2002) Simulating self-motion I: Cues for the perception of motion.

  Virtual Reality, 6(2), 75–85.

Heeger, D. J., Boynton, G. M., Demb, J. B.,Seidemann, E., & Newsome, W. T. (1999).

  Motion opponency in visual cortex. The Journal of Neuroscience,19(16), 7162–7174.

Held, R., Birch, E., & Gwiazda, J. (1980). Stereoacuity of human infants. Proceedings of

  the National Academy of Sciences, USA, 77(9), 5572–5574.

Henriksen, S., Cumming, B. G., & Read, J. C. A. (2016a). A single mechanism can

  account for human perception of depth in mixed correlation random dot stereograms.

  PLoS Computational Biology, 12, e1004906.

Henriksen, S., Read, J. C. A., & Cumming, B. G. (2016b). Neurons in striate cortex

  signal disparity in half-matched random-dot stereograms. Journal of Neuroscience,

  2016, 36, 8967–8976.

Hildreth, E. C. (1984). The measurement of visual motion. Cambridge, MA: MIT Press.

Hoffman, D. M., & Banks, M. S. (2010). Focus information is used to interpret binocular

  images. Journal of Vision, 10(5):13, 1–17.

Horwood, A. M., & Riddell, P. M. (2008). The use of cues to convergence and

  accommodation in naïve, uninstructed participants. Vision Research, 48(15),

  1613–1624.

Israel, I., & Berthoz, A. (1989). Contribution of the otoliths to the calculation of linear

  displacement. Journal of Neurophysiology, 62, 247–263.

Julesz, B., & Tyler, C. W. (1976). Neurontropy, an entropy-like measure of neural

  correlation, in binocular fusion and rivalry Biological Cybernetics, 23, 25–32.

Kamitani, Y., & Tong, F. (2006). Decoding seen and attended motion directions from

  activity in the human visual cortex. Current Biology, 16(11),1096–1102,

Kane, D., Guan, P., & Banks, M. S. (2014). The limits of human stereopsis in space

  and time. The Journal of Neuroscience, 34(4), 1397–1408.

Kim, J., Khuu, S., & Palmisano, S. (2016). Vection depends on perceived surface  

  properties. Attention, Perception, & Psychophysics, 78, 1163–1173.

Kingdom, F. A. A., Prins, N., & Hayes, A. (2003). Mechanism independence for

  texturemodulation detection is consistent with filter-rectify-filter mechanism. Visual

  Neuroscience, 20, 65–76.

Kingdom, F. A. A., Yoonessi, A., & Gheorghiu, E. (2007). The leaning tower illusion: A

  new illusion of perspective. Perception, 36, 475–477.

Kitterle, F. L., & Thomas, J. (1980). The effects of spatial frequency, orientation, and   

  color upon binocular rivalry and monocular pattern alternation. Bulletin of the  

  Psychonomic Society, 16(5), 405–407. http://dx.doi.org/10.3758/BF03329581.

Koenderink, J., Valsecchi, M., van Doorn, A., Wagemans,J., & Gegenfurtner, K. (2017).

  Eidolons:Novel stimuli for vision research. Journal of Vision, 17(2):7, 1–36.

Kountouriotis, G. K., Shire, K. A., Mole, C. D.,Gardner, P. H., Merat, N., & Wilkie, R. M.

 (2013) Optic flow asymmetries bias high-speed steering along roads. Journal of

  Vision, 13(10):23, 1–9.

Kountouriotis, G. K., Mole, C. D., Merat, N., & Wilkie, R. M. (2016). The need for speed:

  Global optic flow speed influences steering. Royal Society Open Science, 3(5): 160096.

Kovács, I., Papathomas, T., Yang, M., & Feher, A. (1996). When the brain changes its

  mind: Interocular grouping during binocular rivalry. Proceedings of the National

  Academy of Sciences of the United States of America, 93(December), 15508–15511.

Land, M., & Horwood, J. (1995, September 28). Which parts of the road guide steering?

  Nature, 377, 339–340.

Lee, S., Shioiri, S., & Yaguchi, H. (2003). Effects of temporal frequency and contrast on

  spatial frequency characteristics for disparity threshold. Optical Review, 10(2),

  120–123.

Lee, S., Shioiri, S., & Yaguchi, H. (2007). Stereo channels with different temporal

  frequency tunings. Vision Research, 47(3), 289–297.

Ledgeway, T., & Smith, A. T. (1994). Evidence for separate motion detecting  

  mechanisms for first- and second-order motion in human vision. Vision Research, 34,

  2727–2740.

Lehky, S. R. (1988). An astable multivibrator model of binocular rivalry. Perception,

  17(2), 215–228.

Leopold, D., & Logothetis, N. (1999). Multistable phenomena: Changing views in

  perception. Trends in Cognitive Sciences, 3(7), 254–264.

Liu, L., Tyler, C. W., & Schor, C. M. (1992). Failure of Rivalry at low contrast: Evidence  

  of  a suprathreshold binocular rummation process. Vision Research, 32(8),

  1471–1479.

Li, Z., & Atick, J. J. (1994). Efficient stereo coding in the multiscale representation.

  Network: Computation in Neural Systems, 5, 157–174.

Malkoc, G., & Kingdom F. A. A. (2012). Dichoptic difference thresholds for chromatic  

  stimuli. Vision Research, 62, 75–83.

Maniatis, L. M. (2008). The leaning tower illusion is not a simple perspective illusion.

  Perception, 37, 1769–1772.

Maruko, I., Zhang, B., Tao, X., Tong, J., Smith, E. L.,III, & Chino, Y. M. (2008).

  Postnatal development of disparity sensitivity in visual area 2 (v2) of macaque

 monkeys. Journal of Neurophysiology, 100(5), 2486–2495.

McKee, S. P., & Taylor, D. G. (2010). The precision of binocular and monocular depth

  judgments in natural settings. Journal of Vision, 10(10):5, 1–13,

McLin, L. N., Schor, C. M., & Kruger, P. B. (1988). Changing size (looming) as a stimulus

  to accommodation and vergence. Vision Research, 28(8), 883–898.

Merigan, W. H. (2000). Cortical area V4 is critical for certain texture discriminations,

  but this effect is not dependent on attention. Visual Neuroscience, 17(6), 949–958.

Merigan, W. H., & Pham, H. A. (1998). V4 lesions in macaques affect both single- and

  multiple-viewpoint shape discriminations. Visual Neuroscience, 15(2), 359–367.

Mittelstaedt, M. L., & Mittelstaedt, H. (2001) Idiothetic navigation in humans:

  Estimation of path length. Experimental Brain Research, 139, 318–332.

Mole, C. D., Kountouriotis, G., Billington, J., & Wilkie, R. M. (2016). Optic flow speed

  modulates guidance level control: New insights into two-level steering. Journal of

  Experimental Psychology: Human Perception and Performance, 42(11), 1818–1838.

Myers, T. A., & Crowther, J. H. (2009). Social comparison as a predictor of body

  dissatisfaction: A meta-analytic review. Journal of Abnormal Psychology, 118,  

  683–698.

Nakayama, K., & Shimojo, S. (1990a). Toward a neural understanding of

  visual surface representation. Cold spring harbor symposia on quantitative biology,

  55, 911–924. Cold Spring Harbor, MA: Cold Spring Harbor Laboratory Press.

Nakayama, K., & Shimojo, S. (1990b). DaVinci stereopsis: Depth and subjective

  contours from unpaired monocular points. Vision Research, 30, 1811–1825.

Nassi, J. J., & Callaway, E. M. (2009). Parallel processing strategies of the primate

  visual system. Nature Reviews Neuroscience, 10(5), 360–372.

Nguyen, V. A., Freeman, A. W., & Alais, D. (2003). Increasing depth of binocular rivalry

  suppression along two visual pathways. Vision Research, 43(19), 2003–2008.

Nienborg, H., Bridge, H., Parker, A. J., & Cumming, B. G. (2005). Neuronal computation

  of disparity in V1 limits temporal resolution for detecting disparity modulation. The

  Journal of Neuroscience, 25(44), 10207–10219.

Norcia, A. M., & Tyler, C. W. (1984). Temporal frequency limits for stereoscopic apparent

  motion processes. Vision Research, 24(5), 395–401.

Noest, A. J., van Ee, R., Nijs, M. M., & van Wezel, R.J. A. (2007). Percept-choice

  sequences driven by interrupted ambiguous stimuli: A low-level neural model.

  Journal of Vision, 7(8):10, 1–14.

O’Shea, R., Sims, J. H., & Govan, G. (1997). The effect of spatial frequency and field size

  on the spread of exclusive visibility in binocular rivalry. Vision Research, 37(2),

  175–183.

Parker, A. J. (2007). Binocular depth perception and the cerebral cortex. Nature

  Reviews Neuroscience, 8, 379–391.

Patterson, R. (1990). Spatiotemporal properties of stereoacuity. Optometry and Vision

  Science, 67(2), 123–128.

Petrig, B., Julesz, B., Kropfl, W., Baumgartner, G., & Anliker, M. (1981, September 18).

  Development of stereopsis and cortical binocularity in human infants:

  Electrophysiological evidence. Science, 213(4514), 1402–1405.

Riecke, B. E., Schulte-Pelkum, J., Avraamides, M. N., Von Der Heyde, M., & Bulthoff,

  H. H. (2006). Cognitive factors can influence self-motion perception (vection) in

  virtual reality. ACM Transactions on Applied Perception, 3, 194–216.

Rogers, B. J., & Graham, M. E. (1983, September 30) Anisotropies in the perception of

  three-dimensional surfaces. Science, 221(4618), 1409–1411.

Sandberg, K., Blicher, J. U., Del Pin, S. H., Andersen, L. M., Rees, G., & Kanai, R.

  (2016). Improved estimates for the role of grey matter volume and GABA in bistable

  perception. Cortex; A Journal Devoted to the Study of the Nervous System and

  Behavior, 83, 292–305.

Schor, C. M. (1979). The relationship between fusional vergence eye movements and

  fixation disparity. Vision Research, 19(12), 1359–1367.

Schor, C. M. (1977). Visual stimuli for strabismic suppression. Perception, 583–593.

Schor, C. M., & Wood, I. (1983). Disparity range for local stereopsis as a function of

  luminance spatial frequency. Vision Research, 23(12), 1649–1654.

Shors, T. J., Wright, K., & Greene, E. (1992). Control of interocular suppression as a

  function of differential image blur. Vision Research, 32(6), 1169–1175.

Schwartz, O., Hsu, A., & Dayan, P. (2007)  Space and time in visual context. Nature

  Reviews. Neuroscience, 8, 522–535.

Schwartz, O., Sejnowski, T. J., & Dayan, P. (2009) Perceptual organization in the tilt

  illusion. Journal of Vision, 9(4):19, 1–20.

Seely, J., & Chow, C. C. (2011). Role of mutual inhibition in binocular rivalry. Journal of

  Neurophysiology, 106(5), 2136–2150.

Sedgwick, H. A., & Levy, S. (1985). Environment-centered and viewer-centered

  perception of surface orientation. Computer Vision, Graphics, and Image Processing,

  31,

Semmlow, J., & Wetzel, P. (1979). Dynamic contributions of the components of binocular

  vergence. Journal of the Optical Society of America, 69(5), 639.

Series, P., Lorenceau, J., & Fregnac, Y. (2003). The silent surround of V1 receptive

 fields: Theory and experiments. The Journal of Physiology (Paris), 97,453–474.

Su, R. Y., He, Z. J., & Ooi, T. L. (2010a). Boundary contour based surface integration

 affected by color. Vision Research, 50, 1833–1844.

Su, Y., He, Z. J., & Ooi, T. L. (2010b). Surface completion affected by luminance contrast

  polarity and common motion. Journal of Vision, 10, 1–14.

Suzuki, S., & Grabowecky, M. (2007). Long-term speeding in perceptual switches

  mediated by attention-dependent plasticity in cortical visual processing. Neuron,

  56(4), 741–753.

Sy, J. L., Tomarken, A. J., Patel, V., & Blake, R. (2016). The time course of binocular

  rivalry during the phases of the menstrual cycle. Journal of Vision, 16(15):22, 1–19.

Tokunaga, K., Ogawa, M., Ikehata, S., Masuda, T., & Seno, T. (2016). Constitution of a

  database of vection scenes in Japanese movies and animations and experimental

  assessments of them. Transactions of the Virtual Reality Society of Japan, 21, 35–47.

  [in Japanese]

Tong, F., Meng, M., & Blake, R. (2006). Neural bases of binocular rivalry. Trends in

  Cognitive Sciences, 10(11), 502–511.

Tootell, R. B., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., . . .

  Belliveau, J. W. (1995). Functional analysis of human MT and related visual cortical

  areas using magnetic resonance imaging. The Journal of Neuroscience, 15(4),

  3215–3230.

Tyler, C. W., & Julesz, B. (1980). On the depth of the cyclopean retina. Experimental

  Brain Research, 40, 196–202.

Ukai, K., Ando, H., & Kuze, J. (2003). Binocular rivalry alternation rate declines with

  age. Perceptual and Motor Skills, 97, 393–397.

van Ee, R. (2005). Dynamics of perceptual bi-stability for stereoscopic slant rivalry and

  a comparison with grating, house-face, and Necker cube rivalry. Vision Research,

  45(1), 29–40.

van Loon, A. M., Knapen, T., Scholte, H. S., St John-Saaltink, E., Donner, T. H., &

  Lamme, V. A. F. (2013). GABA shapes the dynamics of bistable perception. Current

  Biology: CB, 23(9), 823–827.

Vreven, D., McKee, S. P., & Verghese, P. (2002). Contour completion through depth

  interferes with stereoacuity. Vision Research, 42, 2153–2162.

Wade, N. J. (1974). The effect of orientation in binocular contour rivalry of real images

  and afterimages. Perception & Psychophysics, 15(2), 227–232.

Wardle, S. G., & Gillam, B. J. (2016). Gradients of relative disparity underlie the

  perceived slant of stereoscopic surfaces. Journal of Vision, 16(5):16, 1–13.

Weiss, Y., Simoncelli, E. P., & Adelson, E. H. (2002). Motion illusions as optimal

  percepts.Nature Neuroscience, 5(6), 598–604.

Wilson, H. R. (2007). Minimal physiological conditions for binocular rivalry and rivalry

  memory. Vision Research, 47(21), 2741–2750.

Welchman, A. E. (2016). The human brain in depth: how we see in 3D. Annual Review of

  Vision Science, 2, 2.6.1–2.6.32.

Westheimer, G., & McKee, S. P. (1980). Stereoscopic acuity with defocused and spatially

  filtered retinal images. Journal of the Optical Society of America, 70(7), 772–778.

Wolf, M., & Hochstein, S. (2011). High-level binocular rivalry effects. Frontiers in

  Human Neuroscience, 5: 129.

Wolpert, D. M., & Miall, R. C. (1996). Forward models for physiological motor control.

  Neural Networks, 9(8), 1265–1279.

Yang, Y., & Blake, R. (1991). Spatial frequency tuning of human stereopsis. Vision

  Research, 31(7–8), 1177–1189.

Yang, Y., Rose, D., & Blake, R. (1992). On the variety of percepts associated with

  dichoptic viewing of monocular stimuli. Perception, 21, 47–62.

Yuille, A. L., & Grzywacz, N. M. (1989). A mathematical analysis of the motion

  coherence theory. International Journal of Computer Vision, 3, 155–175

Zhaoping, L. (2014) Understanding vision: theory, models, and data. Oxford, UK: Oxford

  University Press.

Zeki, S., Watson, J. D., Lueck, C. J., Friston, K. J., Kennard, C., & Frackowiak, R. S.

  (1991). A direct demonstration of functional specialization in human visual cortex.

  The Journal of Neuroscience, 11(3), 641–649.

Zhou, H., Friedman, H. S., & von der Heydt, R. (2000). Coding of border ownership in

  monkey visual cortex. Journal of Neuroscience, 20, 6594–6611.